
Genus two finite gap solutions to the vector nonlinear Schrödinger equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 F355

(http://iopscience.iop.org/1751-8121/40/17/F06)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 03/06/2010 at 05:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/17
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) F355–F361 doi:10.1088/1751-8113/40/17/F06

FAST TRACK COMMUNICATION

Genus two finite gap solutions to the vector nonlinear
Schrödinger equation

Thomas Woodcock, Oliver H Warren and John N Elgin

Department of Mathematics, Imperial College London, 180 Queen’s Gate, London,
SW7 2AZ, UK

E-mail: thomas.woodcock99@imperial.ac.uk and j.elgin@imperial.ac.uk

Received 7 February 2007
Published 11 April 2007
Online at stacks.iop.org/JPhysA/40/F355

Abstract
A recently published article presents a technique used to derive explicit
formulae for odd genus solutions to the vector nonlinear Schrödinger equation.
In another article solutions of genus two are derived using a different approach
which assumes a separable ansatz. In this communication, the extension of
the first technique to the even genus case is discussed, and this extension is
carried out explicitly for genus two. Furthermore, a birational mapping is found
between the spectral curves that arise in the two approaches.

PACS numbers: 02.30.Ik, 02.30.Jr, 02.30.Zz

In a recent paper [1], Elgin et al provide an effective algorithm for determining finite gap
solutions to the vector nonlinear Schrödinger equation (VNLS) in an anomalously dispersive
regime,

iqt + qxx + 2qq†q = 0. (1)

The VNLS is an envelope equation which models the propagation of ultra-short light pulses
and continuous-wave beams along optical fibres. Here q(x, t) = (q1, q2)

T is a complex-
valued vector representing the electromagnetic field components of the envelope and q† is its
Hermitian conjugate.

In [1], finite gap solutions to (1) are explicitly constructed using an algebrogeometric
technique first devised by Krichever [2]. A hierarchy of mutually commuting flows is
constructed, containing the VNLS flow. Stationary solutions of other flows in the hierarchy
yield finite gap solutions of the VNLS itself, expressed in terms of theta functions on the
desingularization of the spectral curve. In constructing the hierarchy, Elgin et al set certain
constants of integration equal to zero, and in doing so restrict the method to solutions of odd
genus.

In [3], Christiansen et al apply a separable ansatz to find solutions to the same equation.
These solutions are expressed in terms of generalized Weierstrass ℘ functions on a spectral
curve of genus two. Wright [4] also demonstrates the existence of stationary solutions to (1)
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of arbitrary genus, suggesting that it should be possible to apply the method of [1] to the even
genus case.

In this communication, we show how the method of [1] can be modified to yield solutions
expressed in terms of theta functions on a Riemann surface of genus two. We then show that
these solutions are indeed the same as those found in [3], and that the spectral curves that arise
in the two approaches are birationally equivalent.

Consider the Manakov Lax pair system:

vx = L1(z)v = (zL0 + L1)v

vt = L2(z)v = (z2L0 + zL1 + L2)v
(2)

where

L0 =
(

− i
2 0T

0 i
2 I2

)
, L1 =

(
0 qT

−q O2

)
, L2 =

(
iq†q iqT

x

iqx −iqqT

)

are 3 × 3 matrices. Here, 0 is the zero 2-vector, I2 is the 2 × 2 identity matrix and O2 is
the 2 × 2 zero matrix whilst † represents the Hermitian conjugate. Applying the consistency
condition vxt = vtx and inspecting coefficients of order z0 recovers equation (1). As Elgin
et al point out, the spectral curve

{(z, µ) ∈ C
2 : det(L2(z) − µI3) = 0} (3)

of stationary solutions to this system has genus one. By introducing constants appended to the
terms of L2, and considering the stationary solutions of this modified Lax system, we obtain
a different solution to (1). Moreover, a consequence of the modification is that the spectral
curve of this solution has genus two.

Consider replacing L2 above by

L2 =
(

iq†q iqT
x

iqx −iqqT

)
+ i


C11 0 0

0 C22 0
0 0 C33


 , (4)

with L0 and L1 remaining unchanged. The constants, Ckk , are effectively constants of
integration, are all real, and are chosen such that C11 = −(C22 +C33), so L2 remains traceless.
It is precisely these constants that are set to zero in [1]. Since our modification changes the
second of equations (2), we replace t by τ in the modified system. The consistency condition
vxτ = vτx is then equivalent to

iqτ + qxx + 2qq†q −
(

a1q1

a2q2

)
= 0 (5)

with a1 = C22 − C11 and a2 = C33 − C11.
The polynomial defining the curve takes on a much simpler form under the regular

mapping w = µ − i
2z2. This is given by

f (z,w) = w2(w + iz2) + wP(z) + Q(z) (6)

where P(z) = ρ2z
2 + ρ1z + ρ0 and Q(z) = η2z

2 + η1z + η0 are quadratics in z whose
coefficients, although functionally dependent on q(x, t) and its derivatives, are independent
of x and t. Setting Ckk = 0 the coefficients ρ2, η2 and η1 vanish.

In the context of algebraic geometry, it is the affine complex algebraic curve

CA = {(z, w) ∈ C
2 : f (z,w) = 0} (7)
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that is of interest. However, in order to characterize CA properly, it is necessary to consider
the homogenization F(Z,W,X) of f (z,w) and to define the projective complex algebraic
curve

CP = {[Z : W : X] ∈ CP
2 : F(Z,W,X) = 0}. (8)

A singular point of CP is a point at which the gradient of F(Z,W,X) vanishes,
(FZ, FW , FX)T = 0. It is easy to check that there is only one such point, at [Z : W :
X] = [0 : 1 : 0], which we will refer to as ∞ ∈ CP as it is the ‘extra’ point added to the affine
curve CA in order to obtain CP .

There exists a resolution of singularities for CP , that is to say there exists a compact
Riemann surface M and a surjective continuous map π : M → CP such that π−1(∞) is a
finite set of points in M and, setting M̂ = M\π−1(∞), the restriction π |M̂ : M̂ → CP \∞ is
a holomorphic bijection [5, 6]. The genus of the singular curve CP is defined to be that of M.
We can think of M—also called the desingularization of CP —as CP with the singular point
removed and replaced by three ordinary points. We shall label these points ∞1,∞2 and ∞3,
and refer to them as the points at infinity on M.

We are now in a position to calculate the genus g of M. The map φ : (z, w) �→ z is a
three-sheeted covering of C by CA. We can extend this to a three-sheeted covering � of CP

1

by M which maps the points at infinity ∞1,∞2 and ∞3 on M (each on a different sheet of �)
to ∞ ∈ CP

1. The points at infinity on M are not ramification points of �. The number of
ramification points of � on M is therefore equal to the number of ramification points B of φ

on CA. This we can easily calculate by considering the resultant of f (z,w) and ∂f (z,w)

∂w
with

respect to w. The resultant is a polynomial in z whose degree is equal to B. For the case (6)
one can see that B = 8, provided

	 = ρ2
2 − 4iη2 �= 0, (9)

and thus by the Riemann–Hurwitz formula verify that g = 2. Accordingly we introduce a
canonical homology basis of cycles a1, a2, b1 and b2 on M [10].

Insight may be gained into how the introduction of the constants Ckk increases the genus
by considering the limiting case Ckk → 0. In this limit, a pair of ramification points tend to the
singular point ∞ ∈ CP meaning the desingularization M has one handle fewer and its genus
is lower by one. Note that here we are using a three-sheeted covering of M, in order that the
method of [1] can be applied. In fact we shall see that the Riemann surface M is hyperelliptic,
i.e. there exists a two sheeted covering of CP

1 by M.
In performing calculations on M we shall use local parameter ξ = z−1 near the points at

infinity, where the behaviour of w is given by

w =
{−iξ−2 − iρ2 − iρ1ξ + O(ξ 2) at ∞1

a
(2,3)
0 + a

(2,3)
1 ξ + O(ξ 2) at ∞2,3

(10)

with

a
(2,3)
0 = i(ρ2 ±

√
	)/2,

a
(2,3)
1 = ±(

ρ1a
(2,3)
0 + η1

)/√
	.

A set of holomorphic differentials for this curve can be found using the Maple program of
Deconinck and Van Hoeij [7]:

dν1 = i

fw(z,w)
dz, dν2 = w

fw(z,w)
dz, (11)
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in terms of which a normalized set, satisfying
∫
ak

dωj = 2π iδjk , is given by

dωj = 2π i
2∑

k=1

(A−1)jk dνk =
2∑

k=1

cjk dνk (12)

with A the 2×2 matrix with components Ajk = ∫
ak

dνj . The expansion of the Abelian integral
of the vector differential dω at the points at infinity is given by∫ P (k)

∞1

dω = U (k) + V (k)ξ + W (k)ξ 2 + · · · (13)

as P (k) → ∞k and U (k) = ∫ ∞k

∞1
dω. Straightforward calculations determine

V (1) = −ic2

W (1) = 0

V (2,3) = ±	− 1
2
(
ic1 + a

(2,3)
0 c2

)
W (2,3) = i

2	

(
2ia(2,3)

1 + ρ1
)
c1 +

(
a

(2,3)
0

2	

(
2ia(2,3)

1 + ρ1
) ± a

(2,3)
1

2	
1
2

)
c2

where ck = (c1k, c2k)
T.

Using the method discussed in [1], the following genus two finite gap solution to
equation (1) may be derived:

q1(x, t) = χ1
θ(g(x, t) − e + r(2))

θ(g(x, t) − e)
exp(E1x + N1t)

q2(x, t) = χ2
θ(g(x, t) − e + r(3))

θ(g(x, t) − e)
exp(E2x + N2t)

(14)

where

χk = iδk

θ(e)

θ(r(k+1) − e)
,

r(k) =
∫ ∞k

∞1

dω,

e =
2∑

j=1

∫ Pj

∞1

dω − K.

Here θ is the Riemann theta function, defined for any y ∈ C
2 by

θ(y) =
∑

m∈Z
2

exp

(
1

2
mTBm + mTy

)
, (15)

with B the 2 × 2 period matrix with components Bjk = ∫
bk

dωj . K is the vector of Riemann
constants with base point ∞1,D = P1 + P2 is a divisor of general position and δk are real
constants—see [1, 8] for further details. g(x, t) = V x + W t with V ,W calculated using the
Riemann bilinear relations:

V = i

2
(V (1) − V (2) − V (3)) = c2,

W = i(W (1) − W (2) − W (3)) = 0,

(16)

for k = 1, 2. Importantly, the constants Nk may also be calculated using these relations and
are given by Nk = iak, k = 1, 2. The constants Ek may also be shown purely imaginary.
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The square intensity is given by

q†q = ∂2
x ln θ(c2x − e) + R, (17)

for some real constant R, via a straightforward extension of the analogous result for the scalar
nonlinear Schrödinger equation (SNLS), presented in [8]. The form of the right-hand side of
(17) crops up in several quasiperiodic integrable p.d.e’s such as the SNLS and Korteweg–de
Vries equations.

Since W = 0, it follows that the solutions for q1 and q2, (14), are separable in x and t and
therefore necessarily take the form:

q1(x, t) = Q1(x) exp

{
ia1t + iC1

∫ x dx ′

Q2
1(x

′)

}
,

q2(x, t) = Q2(x) exp

{
ia2t + iC2

∫ x dx ′

Q2
2(x

′)

}
,

(18)

with Qk(x) real functions of x and Ck real constants. As shown in [3] solutions of this kind
transform (1) to a Hamiltonian system with independent variable x and Hamiltonian:

H =
2∑

k=1

(
P 2

k − akQ
2
k +

C2
k

Q2
k

)
+

(
Q2

1 + Q2
2

)2
(19)

where Pk = Qk,x . A second independent integral of the motion is given by

G = (P1Q2 − P2Q1)
2 +

(
a1a2 − a2Q

2
1 − a1Q

2
2

)(
Q2

1 + Q2
2

)
− (

a2P
2
1 + a1P

2
2

) −
(

a2
C2

1

Q2
1

+ a1
C2

2

Q2
2

)
+

(
C2

1
Q2

2

Q2
1

+ C2
2
Q2

1

Q2
2

)
, (20)

and is a consequence of rotational symmetry in the system. Analysis of the above system
using spectral techniques produces the results

Q2
1 = a2

1 − a1℘22(u) − ℘12(u)

a1 − a2
,

Q2
2 = a2

2 − a2℘22(u) − ℘12(u)

a2 − a1
.

(21)

Here u = (
u

(0)
1 , x + u

(0)
2

)T
and

℘jk(u) = −∂uj
∂uk

ln σ(u)

with the σ -function defined by

σ(u) = c exp{uTη(2ω)−1u}θ [ε](u). (22)

Interestingly, formulae for |q1|2 and |q2|2 in the form (21) do not follow directly from the
techniques of [1]. In order to compare solutions we sum equations (21) to give

q†q = a1 + a2 − ℘22(u), (23)

which is clearly consistent with the form (17).
It is an elementary corollary of the Riemannn–Roch theorem that every Riemann surface

of genus two is hyperelliptic, [10]. It follows that CA must be birationally equivalent to a
curve {

(λ, ν) ∈ CP
2 : ν2 −

5∑
k=0

αkλ
k = 0

}
(24)
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for some αk ∈ C with α5 �= 0. The explicit form of the birational map is

z =
1
2

(
λ − 1

3 (a1 + a2)
)
ρ1 + i

2 (ν − η1)(
λ − 1

3 (a1 + a2)
)2 − ρ2

(
λ − 1

3 (a1 + a2)
)

+ iη2

w = i

(
λ − 1

3
(a1 + a2)

)
.

(25)

Considering (6) as a quadratic in z, it is clear that (z, w) �→ w is a two-sheeted covering
of C by CA. This is why w depends so simply on λ above. Not only does (25) map the
spectral curve CA into the form (24) of the spectral curve in [3], it precisely recovers the
functional dependence of the coefficients αk on q(x, t) and its derivatives, up to a re-scaling
of the constants Ck . These coefficients may be expressed in terms of the conserved quantities
H and G as follows:

α5 = 4,

α4 = −8(a1 + a2),

α3 = −4H + 4(a1 + a2)
2 + 8a1a2,

α2 = 4H(a1 + a2) − 4G − 4C2
1 − 4C2

2 − 8a1a2(a1 + a2),

α1 = 4G(a1 + a2) − 4a1a2H + 8C2
1a2 + 8C2

2a1 + 4a2
1a

2
2,

α0 = −4a1a2G − 4C2
1a2

2 − 4C2
2a2

1 .

In order to calculate the αk , the coefficients in the original polynomial (6) have been expressed
in terms of ak, Ck,H and G and are given by

ρ2 = (a1 + a2)/3,

ρ1 = −2(C1 + C2),

ρ0 = (a1 + a2)
2/9 − (2a1 − a2)(2a2 − a1)/9 + H,

η2 = −i(2a1 − a2)(2a2 − a1)/9,

η1 = 2iC1(2a2 − a1)/3 + 2iC2(2a1 − a2)/3,

η0 = −i(a1 + a2)(2a1 − a2)(2a2 − a1)/27 − 2iC1C2 + iG + 2i(a1 + a2)H/3.

The birational equivalence of the spectral curves is important because it means that the fields
of meromorphic functions on the two curves are isomorphic.

Applying the relations ν = fz(z,w) and df = fz dz + fw dw = 0, the differentials (11)
are given in terms of λ and ν by

dν1 = du1, dν2 = du2 − 1
3 (a1 + a2) du1, (26)

where du1 = dλ/ν and du2 = λ dλ/ν are the differentials used in [3]. Given that our choice
of first homology basis on the three-sheeted surface has been free up until now, we choose
it such that a and b cycles are directly transferred between two and three-sheeted coverings.
This means we have

(2ω)−1 = 1

2π i

(
c11 − 1

3 (a1 + a2) c12

c21 − 1
3 (a1 + a2) c22

)
(27)

where (2ω)jk = ∫
ak

duj using the notation of [3]. Thus it is clear that (17) and (23) are the
same up to a choice of divisor.

It is natural to ask at this stage whether any of the higher genus spectral curves of the
VNLS solutions are hyperelliptic. Each of the spectral polynomials in [1] is of the form (6)
but with the degrees of P(z) and Q(z) dependent on the genus. Thus, thinking of (6) as a
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cubic polynomial in w, one sees that the function (z, w) �→ z is a function of degree three
on the corresponding Riemann surface. A hyperelliptic Riemann surface of genus g does not
support functions whose degree is odd and less than or equal to g, [10]. It is therefore clear
that spectral curves of the VNLS with genus greater than two are not hyperelliptic.

We have shown how, by allowing the constants Ckk to be nonzero, the method of [1] may
be employed in calculating a new explicit formula for genus two solutions to the VNLS. Since
these solutions are separable one ought to be able to obtain them using the method described
in [3]. Indeed we have demonstrated that the two methods do yield the same solutions, and
have given explicitly a birational mapping between the spectral curve arising via the 3 × 3
Lax system (2) and that of the 2 × 2 Lax representation in [3]. We have thus tied together
two fundamentally different approaches to finding explicit formulae for finite gap solutions
to the VNLS. In future publications we intend to generalize the method of [1] to encompass
solutions of arbitrary genus by employing the idea described above—introducing constants
appended to the nth degree polynomial Ln(z) in the Lax representation (2). In this way we
expect to be able to produce formulae of the form (14) for arbitrary even genus.
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[7] Deconinck B and van Hoeij M 2001 Physica D 152-153 28
[8] Belokolos E D, Bobenko A I, Enol’skii V Z, Its A R and Matveev V B 1994 Algebro-Geometric Approach to

Nonlinear Integrable Equations (Berlin: Springer)
[9] Rauch H E and Farkas H M 1974 Theta Functions with Applications to Riemann Surfaces (Baltimore, MD:

Williams and Wilkins)
[10] Farkas H M and Kra I 1980 Riemann Surfaces (New York: Springer)

http://dx.doi.org/10.1016/j.physd.2006.10.005
http://dx.doi.org/10.1098/rspa.2000.0612
http://dx.doi.org/10.1016/S0167-2789(98)00271-1
http://dx.doi.org/10.1016/S0167-2789(01)00156-7

	Acknowledgments
	References

